

DSS 1

Distributed Servers Sub-System

DSS 2

Contents
I. INTRODUCTION ... 3

II. DSS SUBSYSTEMS .. 4

a. DSS SignalR .. 4

b. Dynamic servers’ sub-system .. 4

i. Unreal Engine Servers configuration .. 5

ii. Connecting to DSS ... 6

iii. Traveling between servers .. 6

iv. Portals ... 7

v. Delegates .. 10

vi. Redis server ... 11

vii. Shards ranking & cross server team-up .. 14

viii. Zone host ranking and load balancing .. 14

ix. Zone host configuration and Namespace ... 15

x. Seamless travel and Predictive server travel -Beta... 16

xi. DSS Integration ... 16

xii. DSS Apis ... 17

xiii. DSS Command Line ... 18

c. EasyKafka .. 20

d. EasyJWT... 21

e. EasyGRPC .. 23

f. Distributed chat server ... 24

III. Cloud Architecture .. 25

a. DSS Services .. 25

b. Cloud Services ... 26

DSS 3

I. INTRODUCTION

Figure 1:Each red box represents a zone that has many shards running on multiple zone hosts.

Distributed servers’ sub-system is set of plugins that helps in scaling your game players to the order of

thousands by providing horizontally scalable approach, benefiting from latest cloud technology. A set of

containers/Virtual machines are dynamically instantiated based on the requirements and referred as zone

hosts. Each zone host is hosting multiple shards of a zone, where zone is an Unreal engine map or part of

a map and shard is an instance of that zone. The dynamically instantiated Zone hosts and shards are

registered and can communicate between each other synchronously and asynchronously.

Figure 2:An Abstracted architecture.

DSS 4

II. DSS SUBSYSTEMS

DSS is made up of seven subsystems in total, all the sub-systems work together to provide a complete

scalable MMO architecture without compromising the player’s experience. All the sub-systems are cross

platform and supports Linux x86_64, Windows x86_64 and Linux ARM64 hosting.

a. DSS SignalR

In order for the client to communicate with server, DSS uses a well-known RPC framework called SignalR.

This framework is based on HTTP1.1. DSS SignalR is the third-party SignalR wrapper for unreal engine, it

is used by some of the sub-systems. Maintained independently to simplify the security patching.

b. Dynamic servers’ sub-system

Dynamic servers’ sub-system is the core of DSS, its responsible for scaling the whole infrastructure to

dynamically adapt to the load. For optimal performance, DSS distributes players based on the host

performance, where each shard is assigned a single core, thus providing a cost-efficient hosting with an

optimal performance. Zone hosts are scaled in and out as per the need.

DSS 5

i. Unreal Engine Servers configuration

In order to register your unreal engine server, you have to

configure the Path and Name. Path represents the absolute path

of the unreal engine and name is the full name and extension.

LogsPath Can be configured to reflect where your unreal

engine saves logs in development builds, in order to fetch those

logs through apis, without the need to access the actual zone

host.

Port Can be used to configure from which port DSS will start

spinning unreal engine servers. Priore to port assigning, DSS

test if the port is available. Additionally, all the ports of

previously scaled out unreal engine servers will be used if it is

available.

EnableLogs If set to true, it will prompt unreal engine server

to save logs, setting it to false will disable that feature.

DynamicProcessorAffinity If set to true, DSS will assign a

single CPU thread for each unreal engine server depending on the thread’s availability. In most cases, it

will increase the performance if enabled due to the single thread architecture of unreal engine server.

Setting it to false will leave the thread assignation to the OS task schedular which means your server might

jump between multiple threads.

Levels It is a list of all the levels inside your game. Levels could be either dungeons or normal maps and

can be assigned as public or private (to be discussed further). Each level has four main args. Name

represents the name and full path of the level such as "/Game/ThirdPersonCPP/Maps/Map1".

ServerLimit is the maximum number of players per server instance after which the unreal engine server

will no longer accept new players. MinimumInstances guarantee minimum number shards of a certain

zone inside a zone host. Args is an array of string arguments that can be passed to the unreal engine

server. It can be accessed from blueprint using "Get Command Line and Parse Command line" or

through C++ "FParse::Value(FCommandLine::Get(), TEXT("DSSPort"), DSSPort)".

Timeout is the cooldown time of normal maps in milli seconds. The server will be scaled out if it stayed

empty for the given time period. Similarly, DungeonTimeout is for the dungeons.

{
 "Path": "Server Path",
 "LogsPath": "Logs Path",
 "Name": "UE Server Executable Name",
 "Port": 7770,
 "EnableLogs": true,
 "DynamicProcessorAffinity": true,
 "Levels": [
 {
 "Name": "Level Name and Path",
 "ServerLimit": 50,
 "MinimumInstances": 1,
 "Args": []
 }
],
 "Timeout": 20000,
 "DungeonTimeout": 10000
}

DSS 6

ii. Connecting to DSS

Figure 3: Connect to DSS from blueprint

There are two ways to connect to DSS from the client side. Both are supported from blueprint and C++.

Connect will allow to connect using a signing key which means the token is going to be created locally.

Connection represents the DSS Service IP and Port, and signing key should be the same as the one

configured in DSS appsettings.json "DSS:SigningKey". It is ideal for testing purposes only; Unauthorized

access error might happen in case of the time zone difference between the client and the zone server.

ConnectWithToken Will allow you to connect to the server using a signed JWT token. The signing key

should be the same as the one configured in DSS appsettings.json "DSS:SigningKey". JWT token should

contain two claims, first is the "name" and it should contain the player’s name, the other one is "role"

and it should be always set to "client". Additionally, you

have to include the expiration time "exp" as a Unix

timestamp. You can refer to this site in order to test your

token https://jwt.io/. The token has to be signed using

HS256 algorithm. Provided a token example.

iii. Traveling between servers
In order to travel between servers, DSS provide a handy API that can be called from C++ or Blueprint.

Figure 4: Traveling from blueprint

OnServerTravelAsync and OnClientTravelAsync can be similarly used from C++.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ

9.eyJyb2xlIjoiQ2xpZW50IiwibmFtZSI6I

k1yU2hhYWJhbiIsImV4cCI6MTcyMzc5

NDY3Mn0.lTr4xFoVp4dnNvwrWvZGF

13BOeylyJ6JnA27_s9iOgs

https://jwt.io/

DSS 7

Both functions are asynchronous, which means you will get a callback with the
response.

OnServerTravelAsync is callable from server only, and the server is going to get the
callback then forward it to the player. On the other hand, OnClientTravelAsync can
be called on client only and the client is going to get the callback directly from
DSS Server.

• MapName: MapName and full path of where to travel
• IsDungeon: Self explanatory
• InstanceID: Dungeon InstanceID to connect to in case IsDungeon is true
• TravelOptions: where to spawn player (None,Coordinate,Tag)
• Tag: Player start tag if Travel Options set to Tag
• Location: where to spawn the player if Coordinates TravelOptions selected
• Yaw: Rotation around Z-Axis Coordinates TravelOptions selected

NB: Player is not bounded to one zone host, DSS will pick the best shard for the
player across all hosted zones.

NB: Players connected to multiple zone host can still team up on the same dungeon if
same dungeon ID is used.

iv. Portals
There are two types of portals in DSS. They act similarly in terms of performance, except one is visible

and one is hidden. Additionally, teleport NPC is supported. The hidden portals are used to split one big

world into multiple shards.

Figure 5: Visible portals

DSS 8

Figure 6:Invisible portal

Figure 7: Teleport NPC

DSS 9

Figure 8: Portal’s configuration

Both hidden and visible portals share the same configuration, and it is essentially a list of the arguments

used by the OnServerTravelAsync and OnClientTravelAsync.

Figure 9: Teleport NPC Configuration

Teleport NPC has two additional fields compared to normal portal. Portal Text, essentially used to display

some text when the player interacts with the NPC and Title which is basically the text displayed on the

button.

DSS 10

v. Delegates
Since all the API calls are asynchronous, the response is going to be received through a delegate. DSS

provides a set of delegates that help customize the game logic.

Figure 10: Delegates

• OnTravel: called after server respond to travel request. It will fire on server or on client if

OnServerTravelAsync or OnClientTravelAsync are called respectively.

• OnDisconnected: Called after UE Server/Client disconnects from DSS Server

• OnServerTerminate: Called by DSS Server on UE Server to request server shutdown. Server will

shutdown after 30 second of the request, but will stop receiving new connections immediately

• OnConnectionError: Called when connection attempt failed with Error message

• OnConnected: Called on the Client and UE Server after connecting to DSS Server

• ShowLoadingScreen: Called on Travel to show loading screen

1. ServerIP: Virtual machine Ip where to connect
2. ServerPort: UE4 Server port
3. PlayerName: Character name that requested the travel
4. ServerConnectionID: Unique UE server ID could be used for servers’
communication
5. Coordinates: corrisponds to the spwaning location

1. ServerIP: Virtual machine Ip where to connect
2. ServerPort: UE4 Server port
3. PlayerName: Character name that requested the travel
4. ServerConnectionID: Unique UE server ID could be used for servers’
communication
5. Coordinates: corrisponds to the spwaning location

1. ConnectionID: Unique ID for UE servers and clients
2. Timestamp: Time synchronization across all UE Servers

DSS 11

vi. Redis server
DSS services uses Redis server as a shared memory cache, in order

to share important data between all the zone hosts. Data can be

used by developer in order to query and understand what is

happening. All the data in Redis server are prefixed with a

namespace to be discussed further.

IsEnabled if set to true, Redis server will be used

Host Server Ip or domain name

Port Server Port typically it is 15517

EnableSSl Should be set to true if TLS is enabled on server

Password Redis server password

Figure 11: Redis server cache

{
 "IsEnabled": true,
 "Host": "",
 "Port": 15517,
 "EnableSSl": false,
 "Password": ""
 }

DSS 12

• DSS:Clients:Players : SET of all the online players names

• DSS:UESServers:Type:Dungeon : SET of all the dungeon shard IDs

• DSS:UESServers:Type:Maps : SET of all the normal shards IDs

• DSS:DSSServers:Instances: SET of all DSS servers instance IDs (zone host)

• DSS:UEServers:DSSInstance:DSSInstanceId: SET of all shards in a certain DSS zone host

• DSS:UEServers:Level:LevelName: SET of all shards of certain level name

DSS Retain all normal shards of each Level name in a sorted sets based on performance metrics to be

discussed. DSS:UEServers:Levels:Accepting:LevelName

Figure 12: An example of shards ranking sorted set

Similarly, all DSS zone hosts are ranked inside a sorted set. PvE:DSS:DSSServer:Stat

Figure 13:An example of zone hosts ranking in a sorted set

Each zone host has a key-value pair in Redis

server, DSS:DSSServer:Instance:DSSInstanceID.

{
 "DSSInstanceID": "813f0a68-25...",
 "DSSServerPrivateIP": "127.0.0.1",
 "DSSServerPublicIP": "127.0.0.1",
 "ServerPort": 5000,
 "S2SPort": 5002,
 "IsAcceptingConnections": true
}

DSS 13

Each zone host has a key-value pair in Redis for

server performance PvE:DSS:DSSServer:Stat:

DSSInstanceID.

ServersCount Represents the number of

shards in the zone host.

Both CpuUsage & RamUsage is in percentage.

Each shard has a key-value pair in Redis

DSS:UEServer:ShardId

{
 "PlayersCount": 0,
 "ServersCount": 3,
 "WorkerQueueCount": 0,
 "CpuUsage": 17,
 "RamUsage": 42
}

{
 "InstanceID": "Shard Id",
 "DSSInstanceID": "Hosted Zone Id",
 "DSSServerPrivateIP": "127.0.0.1",
 "DSSServerPublicIP": "127.0.0.1",
 "LevelName": Level name and path",
 "ServerPort": 7772,
 "S2SPort": 5002,
 "IsDungeon": false,
 "IsPublic": true
}

DSS 14

vii. Shards ranking & cross server team-up
Based on a metric that can be defined by the client, all shards are kept

tracked and ordered in Redis. This will allow DSS to teleport the player

to the best performing shard in all the zone hosts. For instance, if player

is connected to zone host A and attempt to travel to Zone Z it might be

teleported to a shard of Zone Z running in zone host B if it is performing

better than the other shards. In other words, player is going to be

always teleported to the best shard of a certain zone.

The overall score of a shard is determined based on user configuration, and it is normalized to 100.

CPUScore represent how much the CPU usage will affect the shard ranking, RamScore represent how

much the RAM usage will affect the shard ranking and finally ClientsScore represent how much the

total number of players in a shard divided by the max number of players will affect the shard ranking.

ScoreMargin specify the margin in percentage of when to update the ranking of servers. For instance, in

this case if shard score changed by more than 10% up or down, it will be updated in Redis server.

viii. Zone host ranking and load balancing

Based on a metric that can be defined by the client, all zone

hosts are kept tracked and ordered in Redis. This will allow DSS

to redirect the player to the best performing zone hosts on

connect.

MaxAttempts represent how many time DSS can redirect to

another host before definitely accepting the connection.

CPUScore, RamScore, and ScoreMargin are similar to the

shards ranking.

MaxCpuUsage, MaxRamUsage, MaxPlayers and

SingleShardPerCore will affect if the zone host will accept the player connection or attempt to

redirect it to another zone host. In case of MaxAttempts reached, zone host will accept the connection

anyway.

{
 "IsEnabled": true,
 "CPUScore": 30,
 "RamScore": 70,
 "ClientsScore": 20,
 "ScoreMargin": 10
 }

{
 "IsEnabled": true,
 "CPUScore": 30,
 "RamScore": 70,
 "MaxAttempts": 3,
 "ScoreMargin": 10,
 "MaxCpuUsage": 70,
 "MaxRamUsage": 70,
 "MaxPlayers": 1,
 "SingleShardPerCore": true
 }

DSS 15

ix. Zone host configuration and Namespace

If TestInEditor is set to true, all the connection attempts will be

redirected to the EditorPort that represents the UE server port

that is launched by the editor and it can be determined from the

editor preferences. Play Standalone Net mode should be selected to

test in editor.

Namespace will allow DSS to isolate the players using the same Redis server, same messaging broker

and even same zone host. This feature is quite important if you are attempting to create a sandbox

MMO. Where each player is going to be assigned to a certain namespace and will only meet players of

the same namespace.

If IsDebuggingLocally is set true, DSS will redirect all the

connections to localhost. Should be enabled if you are testing

locally on your machine.

StaticIP is the fallback Ip that is going to be used by DSS in case

first option is disabled

 IPForwardingServer is the fallback if the first option is disabled and second option is kept empty. It

should be used if you are hosting DSS behind a load balancer. Should be filled with a URL for a GET API

that either return caller IP as a string or as a JSON e.g: {"ip":"79.79.94.229"}

Since DSS follows a distributed architecture, it uses message broker,

and it can be integrated with Redis, RabbitMQ or Kafka.

{
 "EditorPort": 17777,
 "Port": 5000,
 "SigningKey": "",
 "TestInEditor": false,
 "S2SEnabled": false,
 "S2SPort": 5002,
 "AcceptConnections": true,
 "Namespace": {
 "IsEnabled": true,
 "Value": "PvE"
 }
 }

{
 "IsDebuggingLocally": true,
 "StaticIP": "",
 "IPForwardingServer": ""
 }

{
 "Redis": {
 "IsEnabled": true
 },
 "RabbitMQ": {
 "IsEnabled": false
 },
 "Kafka": {
 "IsEnabled": false
 }
 }

DSS 16

x. Seamless travel and Predictive server travel -Beta
Aiming at solving the seamless travel bottleneck of Unreal engine in multiplayer mode, DSS provide an

important feature that allow the player to travel from one shard to another wile retaining all players

data without the need of any database or storage. Regardless of in which hosted zone the shards are,

Grpc over HTTP2 is used to transfer serialized player data. This feature can be used if only

OnServerTravel is used.

Additionally, if predictive server travel is enabled, DSS will reserve a seat in a shard for the player if it

predicts that the player will travel before it attempt it.

xi. DSS Integration
DSS Support three types of Integrations:

1. Console application

2. Integration with systemd

3. Integration with Windows Services

In case of using the first option DSS will start as a normal console application, while using systemd and

Windows Services will allow DSS to interact with the OS, so that the OS will guarantee the health of DSS

and will manage its lifespan.

Windows service can be created using the following PowerShell script

Systemd service might look like

this

New-Service -Name "DSSService" -BinaryPathName "Path To the Binary" -DisplayName "DSS" -

Description "This is a DSS service."

[Unit]

Description=Dynamic servers subsystem service

[Service]

Type=notify

ExecStart=DSSServerV2 --jsonconfig appsettings.json --log

[Install]

WantedBy=multi-user.target

DSS 17

xii. DSS Apis
DSS has an HTTP1.1 API that allow to control everything from spinning servers to kicking players. Open

Api3 and swagger files are available.

DSS 18

xiii. DSS Command Line

• --log Prompt DSS to log to text File, logs can be fetched through an API

[16:46:41 INF] Initializing Application.

[16:46:41 INF] Reading Configuration From Json File:appsettings.json

[16:46:41 INF] Parsing Configuration.

[16:46:41 INF] Testing Redis Server.

[16:46:42 INF] Testing Message broker.

[16:46:42 INF] Using Redis as a message broker.

[16:46:42 INF] Running as a Console App. Key listener enabled.

[16:46:48 INF] Application Intialized.

[16:46:48 INF] Working Directory:C:\Users\..\source\repos\DSSLiteServerV2

[16:46:48 INF] DSS Namespace:PvE

[16:46:48 INF] OS:Microsoft Windows 11 Home

[16:46:48 INF] OS Version:10.0.22621

[16:46:48 INF] OS Architecture:X64

[16:46:48 INF] Processor:11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz

[16:46:48 INF] Processor Architecture:X64

[16:46:48 INF] Total Threads:16

[16:46:48 INF] Total Memory:65221MB.

[16:46:48 INF] DSS Server Version:001A

[16:47:02 INF] UEServers:3 Players:0 WorkerQueue:2 RAM:42% CPU:16%

[16:47:02 INF] Server utilization score 34%

DSS 19

• --dssport will override DSS port

• --s2sport will override S2S port

• --ueport will override from what port UE server will start spinning

• --ip will override the static server ip

• --acceptconnection will specify if this zone host will accept connections or not

• --jsonconfig will specify which json file to use for configurations

• --apiconfig if used, configuration will be fetched from a GET API instead of JSON

DSS 20

c. EasyKafka
EasyKafka is a Kafka/Redpanda client sub-system for unreal engine. It supports producing and

consuming records through blueprint and C++. This sub-system eases the asynchronous data sharing

between all the shards. Full documentation at https://github.com/sha3sha3/UE-EasyKafka.

Figure 14: Consuming Messages over Blueprints

Figure 15:Producing messages over Blueprints

https://github.com/sha3sha3/UE-EasyKafka

DSS 21

Figure 16: Manage topics and records.

d. EasyJWT
EasyJwt is a JSON web tokens engine sub-system for Unreal Engine 4/5, that provides a c++ and bluprint

interface to Generate, Sign, Verify and manage claims of JWT. Full documentation at

https://github.com/sha3sha3/UE-EasyJWT

Figure 17: Generate signed token

https://github.com/sha3sha3/UE-EasyJWT

DSS 22

Figure 18: Verify JWT

Figure 19: Extract claims from JWT

Figure 20: General API

DSS 23

e. EasyGRPC
EasyGrpc is a set of automation scripts that allows to build and generate a GRPC sub-system for Unreal

Engine. The automation scripts also allow to generate files for protobuf.

Figure 21:Automation scripts

Figure 22: Building protobuf for different platforms

DSS 24

f. Distributed chat server
Since players are distributed on multiple shards and zone hosts, there must be a service that allows

players to chat between each other across all the shards. This subsystem support C++ and Blueprint and

it scales horizontally to provide best cost to performance ratio. This chat service supports profanity

filtering based on reconfigurable multi-language dictionary. It also tackles the issue of retaining the

messages while traveling between shards.

Figure 23:DCS Blueprint API

• Party: send message to all the players in a party

• Clan: send message to all the players in a Clan

• Level: send message to all the players in zone

• Public: send message to all the players

• Server Instance: send message to all the players in a shard

• Whisper: send a private message

• Custom: subscribe and send to a custom channel on the go

• Announce: Send by GM to all players

DSS 25

III. Cloud Architecture

DSS is made up of a set of micro-services that are hosted pretty much the same way in the cloud. The

whole VPC access is protected behind a VPN such as DSS API, VMs….

a. DSS Services
• DSS Servers service: Handles the zones scaling and players distribution, expose full control over

HTTP1.1. Running on Linux OS, integrating with systemd

• DSS Chat service: A distributed chat service that scales horizontally with the players load. It

provides a modular API to create and subscribe to channels on the go.

• DSS background services service: Handles repetitive services and events.

• DSS WebApi Service: Horizontally scalable WebApi that deal with persistent storage and cache.

• DSS Worker Service: Horizontally scalable worker that process events published by different

components asynchronously.

DSS 26

b. Cloud Services

• Networking Load balancers: Distributes traffic on zone hosts.

• Set of containers and VMs: Hosting the different services and dynamically scaling

• Elastic search: All the services are logging to Elastic Search cluster.

• Redis server: Stores important data frequently accessed by DSS services.

• Kafka stream service: For events publishing and processing.

• SQL & NoSql databases: for persistent data storage

• A virtual private cloud: Provide the required security and networking level.

